3.114 \(\int \frac{(d^2-e^2 x^2)^{5/2}}{x^7 (d+e x)} \, dx\)

Optimal. Leaf size=143 \[ \frac{e^4 \sqrt{d^2-e^2 x^2}}{16 d x^2}-\frac{e^2 \left (d^2-e^2 x^2\right )^{3/2}}{24 d x^4}+\frac{e \left (d^2-e^2 x^2\right )^{5/2}}{5 d^2 x^5}-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{6 d x^6}-\frac{e^6 \tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{d}\right )}{16 d^2} \]

[Out]

(e^4*Sqrt[d^2 - e^2*x^2])/(16*d*x^2) - (e^2*(d^2 - e^2*x^2)^(3/2))/(24*d*x^4) - (d^2 - e^2*x^2)^(5/2)/(6*d*x^6
) + (e*(d^2 - e^2*x^2)^(5/2))/(5*d^2*x^5) - (e^6*ArcTanh[Sqrt[d^2 - e^2*x^2]/d])/(16*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.120188, antiderivative size = 143, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.259, Rules used = {850, 835, 807, 266, 47, 63, 208} \[ \frac{e^4 \sqrt{d^2-e^2 x^2}}{16 d x^2}-\frac{e^2 \left (d^2-e^2 x^2\right )^{3/2}}{24 d x^4}+\frac{e \left (d^2-e^2 x^2\right )^{5/2}}{5 d^2 x^5}-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{6 d x^6}-\frac{e^6 \tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{d}\right )}{16 d^2} \]

Antiderivative was successfully verified.

[In]

Int[(d^2 - e^2*x^2)^(5/2)/(x^7*(d + e*x)),x]

[Out]

(e^4*Sqrt[d^2 - e^2*x^2])/(16*d*x^2) - (e^2*(d^2 - e^2*x^2)^(3/2))/(24*d*x^4) - (d^2 - e^2*x^2)^(5/2)/(6*d*x^6
) + (e*(d^2 - e^2*x^2)^(5/2))/(5*d^2*x^5) - (e^6*ArcTanh[Sqrt[d^2 - e^2*x^2]/d])/(16*d^2)

Rule 850

Int[((x_)^(n_.)*((a_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + (c*x)/e)*(a + c*x
^2)^(p - 1), x] /; FreeQ[{a, c, d, e, n, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||
  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2]))

Rule 835

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((e*f - d*g)
*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[
(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; Fr
eeQ[{a, c, d, e, f, g, p}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || Integer
sQ[2*m, 2*p])

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (d^2-e^2 x^2\right )^{5/2}}{x^7 (d+e x)} \, dx &=\int \frac{(d-e x) \left (d^2-e^2 x^2\right )^{3/2}}{x^7} \, dx\\ &=-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{6 d x^6}-\frac{\int \frac{\left (6 d^2 e-d e^2 x\right ) \left (d^2-e^2 x^2\right )^{3/2}}{x^6} \, dx}{6 d^2}\\ &=-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{6 d x^6}+\frac{e \left (d^2-e^2 x^2\right )^{5/2}}{5 d^2 x^5}+\frac{e^2 \int \frac{\left (d^2-e^2 x^2\right )^{3/2}}{x^5} \, dx}{6 d}\\ &=-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{6 d x^6}+\frac{e \left (d^2-e^2 x^2\right )^{5/2}}{5 d^2 x^5}+\frac{e^2 \operatorname{Subst}\left (\int \frac{\left (d^2-e^2 x\right )^{3/2}}{x^3} \, dx,x,x^2\right )}{12 d}\\ &=-\frac{e^2 \left (d^2-e^2 x^2\right )^{3/2}}{24 d x^4}-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{6 d x^6}+\frac{e \left (d^2-e^2 x^2\right )^{5/2}}{5 d^2 x^5}-\frac{e^4 \operatorname{Subst}\left (\int \frac{\sqrt{d^2-e^2 x}}{x^2} \, dx,x,x^2\right )}{16 d}\\ &=\frac{e^4 \sqrt{d^2-e^2 x^2}}{16 d x^2}-\frac{e^2 \left (d^2-e^2 x^2\right )^{3/2}}{24 d x^4}-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{6 d x^6}+\frac{e \left (d^2-e^2 x^2\right )^{5/2}}{5 d^2 x^5}+\frac{e^6 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{d^2-e^2 x}} \, dx,x,x^2\right )}{32 d}\\ &=\frac{e^4 \sqrt{d^2-e^2 x^2}}{16 d x^2}-\frac{e^2 \left (d^2-e^2 x^2\right )^{3/2}}{24 d x^4}-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{6 d x^6}+\frac{e \left (d^2-e^2 x^2\right )^{5/2}}{5 d^2 x^5}-\frac{e^4 \operatorname{Subst}\left (\int \frac{1}{\frac{d^2}{e^2}-\frac{x^2}{e^2}} \, dx,x,\sqrt{d^2-e^2 x^2}\right )}{16 d}\\ &=\frac{e^4 \sqrt{d^2-e^2 x^2}}{16 d x^2}-\frac{e^2 \left (d^2-e^2 x^2\right )^{3/2}}{24 d x^4}-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{6 d x^6}+\frac{e \left (d^2-e^2 x^2\right )^{5/2}}{5 d^2 x^5}-\frac{e^6 \tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{d}\right )}{16 d^2}\\ \end{align*}

Mathematica [A]  time = 0.200641, size = 117, normalized size = 0.82 \[ \frac{\sqrt{d^2-e^2 x^2} \left (70 d^3 e^2 x^2-96 d^2 e^3 x^3+48 d^4 e x-40 d^5-15 d e^4 x^4+48 e^5 x^5\right )-15 e^6 x^6 \log \left (\sqrt{d^2-e^2 x^2}+d\right )+15 e^6 x^6 \log (x)}{240 d^2 x^6} \]

Antiderivative was successfully verified.

[In]

Integrate[(d^2 - e^2*x^2)^(5/2)/(x^7*(d + e*x)),x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(-40*d^5 + 48*d^4*e*x + 70*d^3*e^2*x^2 - 96*d^2*e^3*x^3 - 15*d*e^4*x^4 + 48*e^5*x^5) + 15
*e^6*x^6*Log[x] - 15*e^6*x^6*Log[d + Sqrt[d^2 - e^2*x^2]])/(240*d^2*x^6)

________________________________________________________________________________________

Maple [B]  time = 0.124, size = 521, normalized size = 3.6 \begin{align*} -{\frac{{e}^{6}}{16\,d}\ln \left ({\frac{1}{x} \left ( 2\,{d}^{2}+2\,\sqrt{{d}^{2}}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}} \right ) } \right ){\frac{1}{\sqrt{{d}^{2}}}}}+{\frac{e}{5\,{d}^{4}{x}^{5}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{7}{2}}}}+{\frac{{e}^{6}}{80\,{d}^{7}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{5}{2}}}}+{\frac{{e}^{6}}{48\,{d}^{5}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{3}{2}}}}+{\frac{{e}^{6}}{16\,{d}^{3}}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}-{\frac{1}{6\,{d}^{3}{x}^{6}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{7}{2}}}}-{\frac{{e}^{6}}{5\,{d}^{7}} \left ( - \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) \right ) ^{{\frac{5}{2}}}}+{\frac{{e}^{3}}{5\,{d}^{6}{x}^{3}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{7}{2}}}}+{\frac{{e}^{5}}{5\,{d}^{8}x} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{7}{2}}}}+{\frac{{e}^{7}x}{5\,{d}^{8}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{5}{2}}}}+{\frac{{e}^{7}x}{4\,{d}^{6}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{3}{2}}}}+{\frac{3\,{e}^{7}x}{8\,{d}^{4}}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}+{\frac{3\,{e}^{7}}{8\,{d}^{2}}\arctan \left ({x\sqrt{{e}^{2}}{\frac{1}{\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}}} \right ){\frac{1}{\sqrt{{e}^{2}}}}}-{\frac{5\,{e}^{2}}{24\,{d}^{5}{x}^{4}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{7}{2}}}}-{\frac{3\,{e}^{4}}{16\,{d}^{7}{x}^{2}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{7}{2}}}}-{\frac{{e}^{7}x}{4\,{d}^{6}} \left ( - \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) \right ) ^{{\frac{3}{2}}}}-{\frac{3\,{e}^{7}x}{8\,{d}^{4}}\sqrt{- \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) }}-{\frac{3\,{e}^{7}}{8\,{d}^{2}}\arctan \left ({x\sqrt{{e}^{2}}{\frac{1}{\sqrt{- \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) }}}} \right ){\frac{1}{\sqrt{{e}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-e^2*x^2+d^2)^(5/2)/x^7/(e*x+d),x)

[Out]

-1/16*e^6/d/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/2))/x)+1/5*e/d^4/x^5*(-e^2*x^2+d^2)^(7/2)+1/
80*e^6/d^7*(-e^2*x^2+d^2)^(5/2)+1/48*e^6/d^5*(-e^2*x^2+d^2)^(3/2)+1/16*e^6/d^3*(-e^2*x^2+d^2)^(1/2)-1/6/d^3/x^
6*(-e^2*x^2+d^2)^(7/2)-1/5*e^6/d^7*(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^(5/2)+1/5*e^3/d^6/x^3*(-e^2*x^2+d^2)^(7/2)+1
/5*e^5/d^8/x*(-e^2*x^2+d^2)^(7/2)+1/5*e^7/d^8*x*(-e^2*x^2+d^2)^(5/2)+1/4*e^7/d^6*x*(-e^2*x^2+d^2)^(3/2)+3/8*e^
7/d^4*x*(-e^2*x^2+d^2)^(1/2)+3/8*e^7/d^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2))-5/24*e^2/d^5/x
^4*(-e^2*x^2+d^2)^(7/2)-3/16*e^4/d^7/x^2*(-e^2*x^2+d^2)^(7/2)-1/4*e^7/d^6*(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^(3/2)
*x-3/8*e^7/d^4*(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^(1/2)*x-3/8*e^7/d^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-(d/e+x)^2
*e^2+2*d*e*(d/e+x))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x^7/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.72457, size = 232, normalized size = 1.62 \begin{align*} \frac{15 \, e^{6} x^{6} \log \left (-\frac{d - \sqrt{-e^{2} x^{2} + d^{2}}}{x}\right ) +{\left (48 \, e^{5} x^{5} - 15 \, d e^{4} x^{4} - 96 \, d^{2} e^{3} x^{3} + 70 \, d^{3} e^{2} x^{2} + 48 \, d^{4} e x - 40 \, d^{5}\right )} \sqrt{-e^{2} x^{2} + d^{2}}}{240 \, d^{2} x^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x^7/(e*x+d),x, algorithm="fricas")

[Out]

1/240*(15*e^6*x^6*log(-(d - sqrt(-e^2*x^2 + d^2))/x) + (48*e^5*x^5 - 15*d*e^4*x^4 - 96*d^2*e^3*x^3 + 70*d^3*e^
2*x^2 + 48*d^4*e*x - 40*d^5)*sqrt(-e^2*x^2 + d^2))/(d^2*x^6)

________________________________________________________________________________________

Sympy [C]  time = 20.1386, size = 930, normalized size = 6.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e**2*x**2+d**2)**(5/2)/x**7/(e*x+d),x)

[Out]

d**3*Piecewise((-d**2/(6*e*x**7*sqrt(d**2/(e**2*x**2) - 1)) + 5*e/(24*x**5*sqrt(d**2/(e**2*x**2) - 1)) + e**3/
(48*d**2*x**3*sqrt(d**2/(e**2*x**2) - 1)) - e**5/(16*d**4*x*sqrt(d**2/(e**2*x**2) - 1)) + e**6*acosh(d/(e*x))/
(16*d**5), Abs(d**2)/(Abs(e**2)*Abs(x**2)) > 1), (I*d**2/(6*e*x**7*sqrt(-d**2/(e**2*x**2) + 1)) - 5*I*e/(24*x*
*5*sqrt(-d**2/(e**2*x**2) + 1)) - I*e**3/(48*d**2*x**3*sqrt(-d**2/(e**2*x**2) + 1)) + I*e**5/(16*d**4*x*sqrt(-
d**2/(e**2*x**2) + 1)) - I*e**6*asin(d/(e*x))/(16*d**5), True)) - d**2*e*Piecewise((3*I*d**3*sqrt(-1 + e**2*x*
*2/d**2)/(-15*d**2*x**5 + 15*e**2*x**7) - 4*I*d*e**2*x**2*sqrt(-1 + e**2*x**2/d**2)/(-15*d**2*x**5 + 15*e**2*x
**7) + 2*I*e**6*x**6*sqrt(-1 + e**2*x**2/d**2)/(-15*d**5*x**5 + 15*d**3*e**2*x**7) - I*e**4*x**4*sqrt(-1 + e**
2*x**2/d**2)/(-15*d**3*x**5 + 15*d*e**2*x**7), Abs(e**2*x**2)/Abs(d**2) > 1), (3*d**3*sqrt(1 - e**2*x**2/d**2)
/(-15*d**2*x**5 + 15*e**2*x**7) - 4*d*e**2*x**2*sqrt(1 - e**2*x**2/d**2)/(-15*d**2*x**5 + 15*e**2*x**7) + 2*e*
*6*x**6*sqrt(1 - e**2*x**2/d**2)/(-15*d**5*x**5 + 15*d**3*e**2*x**7) - e**4*x**4*sqrt(1 - e**2*x**2/d**2)/(-15
*d**3*x**5 + 15*d*e**2*x**7), True)) - d*e**2*Piecewise((-d**2/(4*e*x**5*sqrt(d**2/(e**2*x**2) - 1)) + 3*e/(8*
x**3*sqrt(d**2/(e**2*x**2) - 1)) - e**3/(8*d**2*x*sqrt(d**2/(e**2*x**2) - 1)) + e**4*acosh(d/(e*x))/(8*d**3),
Abs(d**2)/(Abs(e**2)*Abs(x**2)) > 1), (I*d**2/(4*e*x**5*sqrt(-d**2/(e**2*x**2) + 1)) - 3*I*e/(8*x**3*sqrt(-d**
2/(e**2*x**2) + 1)) + I*e**3/(8*d**2*x*sqrt(-d**2/(e**2*x**2) + 1)) - I*e**4*asin(d/(e*x))/(8*d**3), True)) +
e**3*Piecewise((-e*sqrt(d**2/(e**2*x**2) - 1)/(3*x**2) + e**3*sqrt(d**2/(e**2*x**2) - 1)/(3*d**2), Abs(d**2)/(
Abs(e**2)*Abs(x**2)) > 1), (-I*e*sqrt(-d**2/(e**2*x**2) + 1)/(3*x**2) + I*e**3*sqrt(-d**2/(e**2*x**2) + 1)/(3*
d**2), True))

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x^7/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError